
Big data requires big investments — hard disks for storage,
computers for processing, datacenters to house them, electricity
to run and cool them, and people’s time to write jobs (and wait
for them to finish). These costs multiply quickly, making efficiency
paramount.

In 2006, Quantcast was a young startup setting out to measure
the web’s audiences, using an early version of Hadoop, and
needing a more efficient, cost-effective data-processing stack.
We began to invest in efficiency innovations for Hadoop,
including a streamlined file system that is now production
hardened and ready to be shared with the community.

The Quantcast File System (QFS) is a distributed file system
developed as an alternative to Apache Hadoop’s HDFS. It’s
100% open-source, plug-in compatible with Hadoop, and delivers
significantly better performance for batch data processing
while simultaneously offering substantial disk-space savings
(and hence computer, datacenter and electricity savings too).

2012

Quantcast File System (QFS)
Faster, more efficient Hadoop processing

Quantcast FIle System (QFS)

More Processing. Less Hardware.
More compact data storage means fewer
hard drives to purchase and power. Faster
data throughput means faster results.
Here’s how QFS delivers both:

• Reed-Solomon (RS) error correction.
Unreachable machines and dead disk
drives are the rule rather than the
exception on a large cluster. Therefore,
tolerating missing data is critical. HDFS
uses triple replication, which expands
data storage requirements 3x. QFS uses
Reed-Solomon encoding, a commonly
used error correction technique for CDs
and DVDs, which offers superior data
recovery power and yet only requires
a 50% data expansion. Thus, QFS
requires only half the storage of HDFS
for equivalent capacity.

• Faster writes. Leaner data encoding
doesn’t just save disk space, it means
less data to write. Since every job on
QFS writes only half as much physical
data, it puts half as much load on the
cluster. Jobs write data faster, and more
can run at the same time.

• Faster reads. A hard drive is the slowest
component in a cluster, with a top read
speed of about 50 MB/s. HDFS reads
each data block from a single drive and
therefore inherits the same speed limit.
QFS reads every block from six drives
in parallel, making its top theoretical
read speed 300 MB/s. This translates
into a significant speed boost for real-
world jobs.

• Direct I/O. The fastest way to read
data from (or write data to) a drive is
in large, sequential bursts. Normal file
I/O APIs permit the operating system to
buffer data and swap disk time between
different processes, which breaks up
big, efficient bursts into small, inefficient
ones. QFS uses low-level APIs that
enable more control to ensure that disk
access stays optimal.

• Fixed memory. QFS is implemented
in C++ and carefully manages its own
memory within a fixed footprint. That
means fast operations, with no interrupts
for garbage collection. It’s also a good
neighbor to other processes on the
same machine, as it never asks the OS
for more memory at the risk of swapping
and extra disk activity. QFS’s memory
management helps keep performance
high and administration simple.

QFS Key Innovations

2012

Benchmark Results
Our benchmarks show how performance compares with
Hadoop’s HDFS at scale on our own systems. The metaserver
benchmark exercises the hub of the file system, which
manages directory structure and oversees operations. QFS’s
lean native implementation demonstrates clear advantage.

The 20 TB benchmark compares performance of read-only
and write-only Hadoop jobs on a real-world cluster, using
different file systems. The write job ran 75% faster using QFS
due to having less data to write. The read job ran 47% faster,
primarily because better parallelism shortened the delays
caused by straggling workers.

Figure 1: Comparison of directory management on QFS metaserver and HDFS

head node, based on total throughput achieved by 512 clients building, inspecting,

or deconstructing a balanced tree totaling 75.7 million directories. Dual E5-2670,

64GB RAM, HDFS version 2.0.0-cdh4.0.0 (Cloudera 4.0).

mkdir

stat

Is

rmdir

0 100 200 300

Metaserver (Head Node)

Directory Operations/msec

HDFS
+294%QFS

+255%

+22%

+78%

Write

Read

0

Figure 2: File system benchmark based on average throughput reading or writing

20TB uncompressed data across 6500 drives on a mixed network of 1–10Gbps links.

Apache HDFS version 1.0.2.

20 40

20TB Hadoop Job

GB/sec Throughput

+75%QFS

HDFS

+47%

60

Quantcast FIle System (QFS)

Proven Reliability
Reliability is critical for a file system and earned only through time
and hard work in a suitably demanding environment. Quantcast
is such an environment. We receive over 40 terabytes of new
data daily, and our daily map-reduce processing can exceed
20 petabytes.

QFS has grown up with us. It evolved from the Kosmos File
System (KFS), which we adopted in 2008 and started using for
secondary storage. We learned many lessons and made many
improvements over the years. In 2011, we committed fully when
we stopped using HDFS and migrated our primary processing
to QFS. Since then we’ve read or written over 4 exabytes to it.
We’re confident it’s ready for other users’ production workloads.

Features at a Glance
• Fault-tolerant petabyte-scale storage

• Feedback-directed chunk allocation

• Coordinated restarts

• Unix-style permissions

• User logging

• Direct I/O

• Fixed-footprint memory management

• Efficient multi-client append mode

• Reed-Solomon error correction

• File replication

• Hadoop compatible

Get QFS
• Free

• Open source under Apache 2 license

• Binaries prebuilt for 64-bit Centos 6.2,
Debian 6.0, OSX 10.8, Ubuntu 11.04

Download
http://quantcast.github.com/qfs

Questions
qfs@quantcast.com

